白先旭 Xianxu Bai
I. 书章节与专著
[1] 新能源汽车理论, 合肥工业大学出版社, 2025年
[2] 智能电动汽车试验学, 高等教育电子音像出版社, 2024年
[3] 白先旭等, 智能网联汽车预期功能安全测试评价关键技术, 机械工业出版社, 北京, 2022年
[4] Bai X X, Xu S X, Tang C and Shen S, Chapter 6: Influence of magnetorheological stabilizer bar on vehicle roll stability, Smart Magnetorheological Materials – Material Characterization: Modeling and Applications, IET (The Institute of Engineering and Technology, UK) Publisher, 135-161, 2019 (doi: 10.1049/PBCS058E_ch6)
II. 期刊论文
[1] Bai X X*, Nie K H, Sun H W, Zhu A D, Dong H X, and Wu D, SOTIF-based analysis and design of control strategies for controllable suspension systems of automobiles, Chinese Journal of Mechanical Engineering, Vol. 38, Article no. 88 (20pp), 2025 (SCI: IF 4.5, doi: 10.1186/s10033-025-01237-3)
[2] Li J, Wu X D, Bai X X, Liu Y G, and Xu M, Intelligent eco-driving control for urban CAVs using a model-based controller assisted deep reinforcement learning, IEEE Transactions on Intelligent Transportation Systems, Vol. 26, No. 6, 7624-7639, 2025 (SCI: IF 7.9, doi: 10.1109/TITS.2025.3559916)
[3] Qiu W H, Bai X X* , Li C X, Qian L J, Zhu A D, and Wu Y F, Design and analysis of a pseudo-active suspension, Vol. 229, Article No. 112502 (34pp), 2025 (SCI: IF 7.9, doi: 10.1016/j.ymssp.2025.112502)
[4] Li W H, Zhou C P, Bai G D and Bai X X*, Design and verification of low-friction and high-performance monotube magnetorheological damper, Proceedings of the IMechE, Part D: Journal of Automobile Engineering, Vol. 239, No. 1, 373-390, 2025 (SCI: IF 1.5, doi: 10.1177/09544070231202291)
[5] Duan S, Bai X X*, Shi Q, Li W H and Zhu A D, Uncertainty evaluation for autonomous vehicles: A case study of AEB system, Automotive Innovation, Vol. 7, No. 4, 644-657, 2024 (SCI: 4.8, doi: 10.1007/s42154-024-00288-x)
[6] Yan Z F, Wu B B, Gao X M, and Bai X X*, Engagement/Disengagement characteristics of pull-type diaphragm spring clutch for heavy-duty commercial vehicles, Chinese Journal of Mechanical Engineering, Vol. 37, 124 (11pp), 2024 (SCI: IF 4.6, doi: 10.1186/s10033-024-01115-4)
[7] 白先旭*, 吴迪, 武裕, 张良, 批判性思维在车辆工程专业课程教学中的运用——以《汽车电器与电子》为例, 高教学刊, Vol. 14, 55-58, 2024 (doi: 10.19980/j.CN23-1593/G4.2024.14.014)
[8] 白先旭*, 潘宇翔, 陈浩, 李维汉, 石琴, 智能网联汽车预期功能安全风险评估3σ接受准则, 机械工程学报, Vol. 60, No. 10, 182-191, 2024 (EI, doi: 10.3901/JME.2024.10.182)
[9] Bai X X* and Chen J C, Pseudo-active actuator with positive-negative dampings, Journal of Intelligent Material Systems and Structures, Vol. 35, No. 6, 649-660, 2024 (SCI: IF 2.774, doi: 10.1177/1045389X241227247)
[10] Bai X X*, Zhang X C, Choi Y T, Shou M J, Zhu G H and Wereley N M*, Adaptive magnetorheological fluid energy absorption systems: A review, Smart Materials and Structures, Article No. 033002 (46pp), 2024 (SCI: IF 4.1, doi: 10.1088/1361-665X/ad278b)
[11] Wang H, Peng L M, Yang K, Wei Z C, Bai X X, and Hashemi E, A holistic robust motion control framework for autonomous platooning, IEEE Transactions on Vehicle Technology, Vol. 72, No. 12, 15213-15226, 2023 (SCI: IF 3.613, doi: 10.1109/TVT.2023.3289632)
[12] Wang Z H, Zhao T K, Qu C C, Zhang R, Li Z, Bai X X, and He Z Z, A high-resolution Film-resistance plantar pressure sensor, IEEE Sensor Journal, Vol. 23, No. 24, 30213-30221, 2023 (SCI: IF 4.3, doi: 10.1109/JSEN.2023.3329879)
[13] 白先旭*, 左瑜, 李维汉, 石琴, 李楚照, 赵树廉, 陈炯, 自动紧急制动系统控制模块的SOTIF量化评价, 汽车工程, Vol. 45, No. 9, 1655-1665, 2023 (EI, doi: 10.19562/j.chinasae.qcgc.2023.09.014) (重磅论文)
[14] 段顺昌, 许男, 白先旭*, 石琴, 考虑迟滞特性的轮胎纵向动力学模型, 机械工程学报, Vol. 59, No. 12, 121-127, 2023 (EI, doi: 10.3901/JME.2023.12.364)
[15] Li W H, Bai X X*, Jiang P, Yuan L, Liu H, Gao P and Pan J B, Magnetorheological semi-active shock mitigation control. Part II: system extension and application analysis, Journal of Intelligent Material Systems and Structures, Vol. 34, No. 15, 1771-1791, 2023 (SCI: IF 2.774, doi: 10.1177/1045389X221151072)
[16] Li W H, Bai X X*, Jiang P, Yuan L, Liu H, Gao P and Pan J B, Magnetorheological semi-active shock mitigation control. Part I: numerical analysis and preliminary tests, Journal of Intelligent Material Systems and Structures, Vol. 34, No. 16, 1785-1901, 2023 (SCI: IF 2.774, doi: 10.1177/1045389X221151071)
[17] Duan S C, Bai X X*, Shi Q and Liu Z H, Nonlinear dynamics analysis in pneumatic tire modeling, Nonlinear Dynamics, Vol. 111, 1095-1107, 2023 (SCI: IF 5.741, doi: 10.1007/s11071-022-07919-0)
[18] Duan S C, Sun J, Bai X X*, Nguyen Q H, Li W H and Liu Y, Principle design and control of a brake-by-wire actuator featuring magnetorheological clutch, Proceedings of the IMechE, Part D: Journal of Automobile Engineering, Vol. 237, No. 4, 793-802, 2023 (SCI: IF 1.828, doi: 10.1177/09544070221079501)
[19] Zhu G H*, Li Z G, Guo H L, Bai X X*, Xiong Y P and Li M, Dynamic modeling and vibration control for isolation systems based on magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, Vol. 34, No. 10, 1224-1236, 2023 (SCI: IF 2.774, doi: 10.1177/1045389X221136298)
[20] Si Z Y, Bai X X*, Qian L J and Chen P, Principle and control of active engine mount based on magnetostrictive actuator, Chinese Journal of Mechanical Engineering, Vol. 35, No. 146, 1-14, 2022 (SCI: IF 2.964, doi: 10.1186/s10033-022-00820-2)
[21] 陈浩, 王红, 李维汉, 白先旭*, 陈炯, 李楚照, 石琴, 孙骏, 基于行车安全场理论的预期功能安全场景风险评估, 汽车工程, Vol. 44, No. 11, 1636-1646, 2022 (doi: 10.19562/j.chinasae.qcgc.2022.11.002)
[22] Wang D M, Wang B, Zi B, Bai X X, and Chen W W, Development and control of a magnetorheological damper-Based brake pedal simulator for vehicle brake-by-wire systems, Chinese Journal of Mechanical Engineering, Vol. 35, 136 (13pp), 2022 (SCI: IF 2.964, doi: 10.1186/s10033-022-00809-x)
[23] 严正峰, 侯林子, 韩瑱, 白先旭*, 汽车离合器IPPD方法研究, 工程设计学报, Vol. 29, No. 5, 537-546, 2022 (doi: 10.3785/j.issn.1006-754X.2022.00.052)
[24] 段顺昌, 白先旭*, 石琴, 李维汉, 何冠男, 汽车自动紧急制动系统控制策略的预期功能安全设计, 汽车工程, Vol. 44, No. 9, 1305-1317, 2022 (doi: 10.19562/j.chinasae.qcgc.2022.09.002)
[25] Zhu A D, He G N, Duan S C, Li W H and Bai X X*, Phase portrait trajectory of a three degree-of-freedom vehicular dynamic model, ASME Transactions on Journal of Dynamic Systems, Measurement and Control, Vol. 144, No. 5, Article no. 051002 (9pp), 2022 (SCI: IF 1.372, doi: 10.1115/1.4053294)
[26] Bai X X* and He G, Pseudo-active actuators: a concept analysis, International Journal of Mechanical System Dynamics, Vol. 1, No. 2, 230-247, 2021 (doi: 10.1002/msd2.12018) (Won Best Paper Award)
[27] 白先旭*, 邓学才, 沈升, 磁流变减振器的可控特性标定方法研究, 合肥工业大学学报(自然科学版), Vol. 44, No. 8, 1026-1033, 2021 (doi: 10.3969/j.issn.1003-5060.2021.08.004)
[28] Bui Q D, Bai X X and Nguyen Q H*, Dynamic modeling of MR dampers based on quasi–static model and Magic Formula hysteresis multiplier, Engineering Structures, Vol. 245, No. 1, 112855(12pp), 2021 (SCI: IF 4.471, doi: 10.1016/j.engstruct.2021.112855)
[29] Bai X X*, Ramin Sedaghati, Janusz Goldasz and Shuaishuai Sun, Editorial: hysteresis characterization and control of electrorheological and magnetorheological materials, Vol. 8, 732353 (3pp), 2021 (SCI: IF 3.515, doi: 10.3389/fmats.2021.732353)
[30] Bai X X* and Tang C, Dynamic RC operator-based hysteresis model of MR dampers, Smart Materials and Structures, Vol. 30, No. 8, 085018 (18pp), 2021 (SCI: IF 3.613, doi: 10.1088/1361-665X/ac04c2)
[31] Bai X X*, Chen G, Li W H, Jia R and Wang J C, Critical speeds of electric vehicles for regenerative braking, Automotive Innovation, Vol. 4, 201-214, 2021 (doi: 10.1007/s42154-021-00143-3)
[32] 祝安定, 李祥, 杨森, 白先旭*, 一种纵向垂向二维振动集成半主动可控座椅悬架系统的试验研究, 合肥工业大学学报(自然科学版), Vol. 44, No. 3, 304-310, 2021 (doi: 10.3969/j.issn.1003-5060.2021.03.003)
[33] Chen Q, Bai X X*, Zhu A D, Wu D, Deng X C and Li Z D, Influence of balanced suspension on handling stability and ride comfort of off-road vehicle, Proceedings of the IMechE, Part D: Journal of Automobile Engineering, Vol. 235, No. 6, 1602-1616, 2021 (SCI: IF 1.384, doi: 10.1177/0954407020976197)
[34] 白先旭*, 杨森, 磁流变半主动落锤冲击缓冲系统的“软着陆”控制实验与分析, 机械工程学报, Vol. 57, No. 1, 121-127, 2021 (EI, doi: 10.3901/JME.2021.01.121) (封面论文)
[35] Zhu G*, Xiong Y, Li Z, Xiao L, Li M and Bai X X*, A nonlinear dynamic model of magnetorheological elastomers in magnetic fields based on fractional viscoelasticity, Journal of Intelligent Material Systems and Structures, Vol. 21, No. 1, 228-239, 2021 (SCI: IF 2.410, doi: 10.1177/1045389X20953618)
[36] Bui Q D, Nguyen Q H*, Bai X X* and Mai D D, A new hysteresis model for magneto-rheological dampers based on Magic Formula, Proceedings of the IMechE, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 13, 2437-2451, 2021 (SCI: IF 1.386, doi: 10.1177/0954406220954884)
[37] Bai X X* and Li C X, Precise real-time hysteretic force tracking of magnetorheological damper, Smart Materials and Structures, Vol. 29, 10, no. 104002 (24pp), 2020 (SCI: IF 3.613, doi: 10.1088/1361-665X/aba81d)
[38] Zhong W M, Zhu A D, Bai X X*, Wereley N M and Zhang N, Modeling and control a shock absorber with both tunable inertance and damping, Frontiers in Materials - Smart Materials, Vol. 7, 204 (14pp), 2020 (SCI: IF 2.705, doi: 10.3389/fmats.2020.00204)
[39] Liu Q, Bai G D, Liu Z H, Bai X X*, Du H, Chen P and Qian L J, Magnetorheological semi-active mount system for engine: prototyping and testing, Proceedings of the IMechE, Part D: Journal of Automobile Engineering, Vol. 234, No. 13, 3081-3094, 2020 (SCI: IF 1.384, doi: 10.1177/0954407020925724)
[40] Si Z Y, Bai X X* and Qian L J, Asymmetric hysteresis modeling approach featuring “inertial system + shape function” for magnetostrictive actuators, Materials, Vol. 13, No. 11, 2585 (24pp), 2020 (SCI: IF 3.057, doi: 10.3390/ma13112585)
[41] Tang C, Bai X X* and Xu S X, Magnetorheological semi-active anti-roll bar for automobiles, SAE International Journal of Passenger Cars: Electronic and Electrical Systems, Vol. 12, No. 2, 07-12-0007(22pp), 2020 (doi: 10.4271/07-12-02-0007)
[42] Liao Z C, Bai X X*, Li Y and Sun J, Design, modeling and verification of a test bench for braking simulation of 1/4 vehicle, Proceedings of the IMechE, Part D: Journal of Automobile Engineering, Vol. 234, No. 5, 1425-1441, 2020 (SCI: IF 1.275, doi: 10.1177/0954407019874961)
[43] 白先旭*, 徐时旭, 沈升, 杜浩, 邓学才, 磁流变半主动横向稳定杆对汽车侧倾的影响, 机械工程学报, Vol. 55, No. 24, pp. 145-152, 2019 (doi: 10.3901/JME.2019.24.145)
[44] Zhu G H*, Li Z G, Xiong Y P, Li M, Bai X X*, A fractional-order model on the dynamic mechanical behaviour of magnetorheological elastomers, Smart Materials and Structures, Vol. 29, No. 2, 025020 (14pp), 2019 (SCI: IF 3.543, doi: 10.1088/1361-665X/ab62de)
[45] Xu L, Wang D H*, Fu Q, Yuan G, and Bai X X, A novel motion platform system for testing prosthetic knees, Measurement, Vol. 146, 139-151, 2019 (SCI: IF 2.791, doi: 10.1016/j.measurement.2019.04.073)
[46] Bai X X* and Yang S, Hybrid controller of magnetorheological semi-active seat suspension system for both shock and vibration mitigation, Journal of Intelligent Material Systems and Structures, Vol. 30, No. 11, 1613-1628, 2019 (SCI: IF 2.582, doi: 10.1177/1045389X19844009)
[47] Bai X X* and Chen P, On the hysteresis mechanism of magnetorheological fluids , Frontiers in Materials – Rising Stars (Special Issue), Vol. 6, 36 (9pp), 2019 (SCI: IF 2.689, doi: 10.3389/fmats.2019.00036)
[48] Zhong W M, Bai X X*, Tang C and Zhu A D, Principle study of a semi-active inerter featuring magnetorheological effect, Frontiers in Materials - Smart Materials, Vol. 6, 17 (9pp), 2019 (SCI: IF 2.689, doi: 10.3389/fmats.2019.00017)
[49] Bai X X*, Cai F L and Chen P, Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers, Mechanical Systems and Signal Processing, Vol. 117C, No. 1, 157-169, 2019 (SCI: IF 5.005, doi: 10.1016/j.ymssp.2018.07.050) (汤森路透:高被引论文)
[50] Bai X X*, Deng X C, and Shen S, Controllability of magnetorheological shock absorber. Part II: Testing and analysis, Smart Materials and Structures, Vol. 28, No. 1, 015023 (14pp), 2019 (SCI: IF 3.543, doi: 10.1088/1361-665X/aaf099)
[51] Bai X X*, Shen S, Wereley N M, and Wang D H, Controllability of magnetorheological shock absorber. Part I: Insights, modeling and simulation, Smart Materials and Structures, Vol. 28, No. 1, 015022 (18pp), 2019 (SCI: IF 3.543, doi: 10.1088/1361-665X/aaf072)
[52] 钱立军, 杜浩, 陈朋, 白先旭*, 一种内旁通道式磁流变液悬置结构原理与试验研究, 北京理工大学学报, Vol. 38, No. 1, pp. 20-23, 2018 (doi: 10.15918/j.tbit1001-0645.2018.1.005)
[53] Bai X X*, Zhong W M, Zou Q, Zhu A D, and Sun J, Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability, Smart Materials and Structures, Vol. 27, No. 6, 075041 (18pp), 2018 (SCI: IF 2.963, doi: 10.1088/1361-665X/aac7ef)
[54] Chen P#, Bai X X#,*, Qian L J, and Choi S B, An approach for hysteresis modeling based on shape function and memory mechanism, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 3, 1270-1278, 2018 (SCI: IF 4.357, doi: 10.1109/TMECH.2018.2833459)
[55] 白先旭*, 程伟, 徐时旭, 钱立军, 坐姿人体4自由度动力学模型研究——集中参数模型及在汽车乘坐舒适性研究中的应用, 工程设计学报, Vol. 24, No. 6, pp. 638-647, 2017 (doi: 10.3785/j.issn.1006-754X.2017.06.005)
[56] Chen P, Bai X X*, Qian L J, and Choi S B, A new hysteresis model based on force-displacement characteristics of magnetorheological fluid actuators subjected to squeeze mode operation, Smart Materials and Structures: Letter, Vol. 26, No. 1, 06LT01 (10pp), 2017 (SCI: IF 2.909, doi: 10.1088/1361-665X/aa6ec8)
[57] Bai X X*, Xu S X, Cheng W, and Qian L J, On 4-degree-of-freedom biodynamic models of seated occupants: lumped-parameter modeling, Journal of Sound and Vibration, Vol. 402C, No. 1, 122-141, 2017 (SCI: IF 2.593, doi: 10.1016/j.jsv.2017.05.018)
[58] Qian L J, Xin X L, Bai X X*, and Wereley N M, State observation based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 18, 2539-2556, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X17692047)
[59] Xin F L, Bai X X*, and Qian L J, Principle, modeling and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 16, 2239-2254, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X16672731)
[60] Bai X X*, Jiang P, and Qian L J, An integrated semi-active seat suspension for both longitudinal and vertical vibration isolation, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 8, 1036-1049, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X16666179)
[61] Chen P, Qian L J, Bai X X*, and Choi S B, Velocity-dependent characteristics of magnetorheological fluids in squeeze mode considering the hydrodynamic and the magnetic field interactions, Journal of Rheology (1978-present), Vol. 61, No. 3, 455-465, 2017 (SCI: IF 3.136, doi: 10.1122/1.4978594)
[62] Bai X X*, Wereley N M, and Wang D H, Control and analysis of a magnetorheological energy absorber for both shock and vibration, International Journal of Acoustics and Vibration, Vol. 22, No. 1, 104-110, 2017 (SCI, doi: 10.20855/ijav.2017.22.1456)
[63] Xin F L, Bai X X*, and Qian L J, Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers, Smart Materials and Structures, Vol. 25, No. 10, 105002 (16pp), 2016 (SCI: IF 2.909, doi: 10.1088/0964-1726/25/10/105002)
[64] Chen P, Bai X X*, Qian L J, and Choi S B, A magneto-rheological fluid mount featuring squeeze mode: analysis and testing, Smart Materials and Structures, Vol. 25, No. 5, 055002 (13pp), 2016 (SCI: IF 2.909, doi: 10.1088/0964-1726/25/5/055002)
[65] Chen P, Bai X X*, and Qian L J, Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: experimental tests and modelling, Journal of Applied Physics, Vol. 119, No. 10, 105101 (10pp), 2016 (SCI: IF 2.101, doi: 10.1063/1.4943168)
[66] Bai X X*, Wereley N M, and Choi Y T, Magnetorheological energy absorber with dual concentric annular valves, Journal of Intelligent Material Systems and Structures, Vol. 27, No. 7, pp. 944-958, 2016 (SCI: IF 2.255, doi: 10.1177/1045389X15577659)
[67] Bai X X*, Chen P, and Qian L J, Principle and validation of modified hysteretic models for magnetorheological dampers, Smart Materials and Structures, Vol. 24, No. 8, 085014 (12pp), 2015 (SCI: IF 2.502, doi: 10.1088/0964-1726/24/8/085014)
[68] Bai X X*, Wereley N M, and Hu W, Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration, Journal of Applied Physics, Vol. 117, No. 17, C711 (4pp), 2015 (SCI: IF 2.168, doi: 10.1063/1.4908302)
[69] Bai X X* and Wereley N M, A fail-safe magnetorheological energy absorber for shock and vibration isolation, Journal of Applied Physics, Vol. 115, No. 17, B535 (3pp), 2014 (SCI: IF 2.168, doi: 10.1063/1.4870316)
[70] Bai X X, Hu W, and Wereley N M, Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions, IEEE Transactions on Magnetics, Vol. 49, No. 7, pp. 3422-3425, 2013 (SCI: IF 1.363, doi: 10.1109/TMAG.2013.2241402)
[71] Bai X X, Wang D H, and Fu H, Principle, modeling, and validation of an annular-radial-duct magnetorheological damper, Sensors And Actuators A-Physical, Vol. 201, No. 1, pp. 302-309, 2013 (SCI: IF 1.802, doi: 10.1016/j.sna.2013.07.028)
[72] Wang D H and Bai X X, A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, Vol. 22, No. 7, 075001 (14pp), 2013 (SCI: IF 2.096, doi: 10.1088/0964-1726/22/7/075001)
[73] Wang D H and Bai X X, Pareto optimization based tradeoff between the damping force and the sensed relative displacement of a self-sensing magnetorheological damper, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 13, pp. 1451-1467, 2011 (SCI: IF 1.604, doi: 10.1177/1045389X11411221)
[74] Wang D H, Bai X X, and Liao W H, An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, Vol. 19, No. 10, 105008 (19pp), 2010 (SCI: IF 2.096, doi: 10.1088/0964-1726/19/10/105008)
[75] 白先旭*, 王代华, 体积一定的一种集成相对位移自传感磁流变阻尼器的性能优化, 振动与冲击, Vol. 33, No. 10, pp. 55-61, 2014
III. 国际/国内学术会议
[76] Pan Y X and Bai X X*, Driving safety field-based scenario generation of key high-risk test scenario library for intelligent connected vehicles, The 8th CAA International Conference on Vehicular Control and Intelligence, 2024 Oct 25-27, doi: 10.1109/CVCI63518.2024.10830247
[77] Qiu W H and Bai X X*, A Feed-forward compensation optimization control for pseudo-active suspension, The 8th CAA International Conference on Vehicular Control and Intelligence, 2024 Oct 25-27, doi: 10.1109/CVCI63518.2024.10830074
[78] 白先旭*, 智能网联汽车控制系统预期功能安全(SOTIF)测评方法与流程, 中国汽车工程年会暨展览会(院士论坛), 2023年10月25日-27日, 北京(邀请报告)
[79] 白先旭*, 磁流变智能结构及其振动/冲击控制技术, 兵器装备工程学术年会, 2023年10月12日-14日, 重庆(邀请报告)
[80] 白先旭*, 智能网联汽车控制系统预期功能安全测试评价与接受准则, SAE 2023汽车智能与网联技术国际学术会议, 2023年9月22日-23日, 南昌(邀请报告)
[81] Yan Z F, Liu S F, Cheng S and Bai X X*, Torsional vibration attenuation of HEV drivetrain featuring on a controllable damper, SAE Technical Paper 2023-01-7022, 2023, doi:10.4271/2023-01-7022.
[82] 李成蹊, 白先旭*, 钱立军, 周承培, 车辆伪主动悬架构型设计, The 7th CAA International Conference on Vehicular Control and Intelligence, 2023 Oct 28-30
[83] Qiu W H, Bai X X* and Qian L J, Optimization of a pseudo-active suspension network, The 2nd International Conference on Mechanical System Dynamics (2nd ICMSD), Lecture Notes in Mechanical Engineering, Springer (doi: 10.1007/978-981-99-8048-2_62)
[84] Bai X X* and Lv Z Z, Analysis of a pseudo-active vehicle suspension, The 2nd International Conference on Mechanical System Dynamics (2nd ICMSD), Lecture Notes in Mechanical Engineering, Springer (doi: 10.1007/978-981-99-8048-2_282)
[85] 白先旭*, 陈建川, 吕壮壮, 伪主动磁流变执行器:设计方法、原型实验与系统控制, 第16届中国流变学学术会议, 2022年12月18日-20日, 福州
[86] Bai X X*, Lv Z Z, and Chen J C, Leaping to “active” with no more cost than “semi-active” - Pseudo-active actuators: Principle, tests, and control, 32nd International Conference on Adaptive Structures and Technologies (ICAST 2022), Suzhou, China, November 27-30, 2022
[87] Bai X X*, Chen J C, Li C X, Design of a pseudo-active actuator with semi-active actuators, The 19th Asia Pacific Vibration Conference, No. 396, November 1-3, 2022
[88] Ashenafi S and Bai X X*, A gear drive brake-by-wire actuator, The 6th CAA International Conference on Vehicular Control and Intelligence, 2022 Oct 28-30 (INSPEC, doi: 10.1109/CVCI56766.2022.9964767)
[89] Duan S C, Li W H, Chen J, Li Q, Shi Q and Bai X X*, Influence of fog weather on automotive vision target detection, The 6th CAA International Conference on Vehicular Control and Intelligence, 2022 Oct 28-30 (INSPEC, doi: 10.1109/CVCI56766.2022.9965134)
[90] Qi S D, Li W H, Zhu A D and Bai X X*, Responses of preview-based vehicle suspension system on discrete impact roads, The 6th CAA International Conference on Vehicular Control and Intelligence, 2022 Oct 28-30 (INSPEC, doi: 10.1109/CVCI56766.2022.9964996)
[91] Duan SC, Li WH, Shi Q and Bai X X*, Scenario-dependent algorithm for AEB systems considering safety distance and second-order TTC, FISITA, August 7-9, 2022
[92] Bai X X*, Zuo Y, Li WH, Shi Q, Li CZ and Zhao SL, Quantitative evaluation of SOTIF for control module of AEBS, FISITA, August 7-9, 2022
[93] Li Q, Li WH, Chen J and Bai X X*, Redundancy strategy for ACC based on fusion analysis of FuSa and SOTIF, FISITA, August 7-9, 2022
[94] Yuan L, Bai X X*, Li W H, Jiang P and Sun H W, Analysis and tests of magnetorheological adaptive shock mitigation systems, The 1st International Conference on Mechanical System Dynamics (1st ICMSD), 541-545, August 24-27, 2022, Nanjing, China. (ISTP, doi: 10.1049/icp.2022.1806)
[95] Wang Q, Zhou J, Bai X X and Chen J, Generating massive scenarios from real data for safe and large-scale deployment for autonomous driving, The 2021 International Conference on Intelligent Vehicles (ICoIV 2021), November 7-9, 2021
[96] 白先旭*, 磁流变半主动冲击缓冲控制系统——数值分析与落锤试验, 第15届中国流变学学术会议, 2020年12月5日-8日, 重庆(邀请报告)
[97] 段顺昌, 白先旭*, 刘洋, 磁流变传动线控制动器的原理设计与控制, 中国汽车工程学会年会, 2020年10月26日-28日, 上海
[98] 白先旭*, 精确的可控执行器模型—(磁流变)半主动悬架系统必备基础, 中国汽车工程学会悬架技术学术年会, 2020年08月16日(邀请报告, OnLine)
[99] Bai G D, Liu Q, Bai X X*, Liu Z H, Du H, Test and analysis of MR mounting system for automotive engines. InActive and Passive Smart Structures and Integrated Systems IX 2020 Apr 22 (Vol. 11376, p. 1137610). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2556144)
[100] Liu Y, Duan S C, Bai X X*, Sun J, Brake-by-wire actuator featuring magnetorheological fluid clutch. InSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020 Apr 23 (Vol. 11379, p. 113791K). International Society for Optics and Photonics. (Won Travel Award from Hefei University of Technology) (ISTP, doi: 10.1117/12.2556140)
[101] Sun J, Liao Z C, Yao S Y, Bai X X*, Optimization of magnetorheological brake and its ABS bench test. InSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020 Apr 23 (Vol. 11379, p. 113791S). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2556142)
[102] Bai X X*, A precise hysteresis model-based magnetorheological soft-landing control, 17th International Conference on Eletrorheological fluids and Magnetorheological Suspensions, Wollongong, Australia, December 15-20, 2019 (Invited Talk)
[103] Bai X X*, Hysteresis modeling and precise control of magnetorheological semi-active system, The World Congress on Smart Materials and Structures, November 21-22, 2019, Singapore (Keynote)
[104] 白先旭*, 杨森, 防地雷反伏击车用磁流变半主动座椅悬架系统, 第三届中国自动化学会车辆控制与智能化专业委员会学术年会国大会, 2019年9月21日-22日, 安徽合肥(邀请报告)
[105] 白先旭*, 陈朋, 我们了解并不多的磁流变磁滞, 中国力学大会2019-流变学进展, 2019年8月25日-28日, 浙江杭州
[106] Chen G and Bai X X*, Four-quadrant energy harvester, 2nd International Conference on Vibration and Energy Harvesting Application, Shanghai, China, July 12-14, 2019
[107] 白先旭*, 陈根, 郏瑞, 宣亮, 李维汉, 王经常, 王金桥, 汽车制动能量回收临界速度确定方法研究, 能源、环境与健康——长三角一体化博士后学术论坛, 2019年9月19-20日, 安徽合肥(被评为:优秀论文奖)
[108] 白先旭*, 邓学才, 沈升, 磁流变减振器的可控特性标定方法研究, 第17届全国非线性振动暨14届全国非线性动力学和运动稳定性学术会议, 2019年5月10日-12日, 江苏南京
[109] 白先旭*, 杨森, 磁流变半主动落锤冲击缓冲系统的“软着陆”控制实验与分析, 第17届全国非线性振动暨14届全国非线性动力学和运动稳定性学术会议, 2019年5月10日-12日, 江苏南京(被评为:优秀论文奖)
[110] 汤超, 白先旭*, 徐时旭, 汽车磁流变半主动横向稳定杆的参数分析与控制仿真, 第17届全国非线性振动暨14届全国非线性动力学和运动稳定性学术会议, 2019年5月10日-12日, 江苏南京
[111] Bai X X* and Yang S, Minimizing deceleration for drop-induced shock systems using magnetorheological energy absorber. Active and Passive Smart Structures and Integrated Systems XII 2019 Mar 21 (Vol. 10967, p. 1096716). International Society for Optics and Photonics (ISTP, doi: 10.1117/12.2513364)
[112] Si Z Y, Bai X X*, Qian L J, An enhanced Duhem model of magnetostrictive material-based actuators. Behavior and Mechanics of Multifunctional Materials XIII 2019 Mar 29 (Vol. 10968, p. 1096818). International Society for Optics and Photonics (ISTP, doi: 10.1117/12.2513583)
[113] Zhu A D, Zhong W M, Bai X X*, Design and analysis of a shock absorber with both tunable inertance and damping. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 Mar 27 (Vol. 10970, p. 109701U). International Society for Optics and Photonics. (Won Travel Award from Hefei University of Technology) (ISTP, doi: 10.1117/12.2513366)
[114] Zhong W M, Bai X X*, Zhu A D, Shock absorber with adaptive inertance and damping featuring magnetorheological effect, 1st International Conference on Vibration and Energy Harvesting Application, Shenzhen, China, November 2-4, 2018
[115] 陈健, 白先旭*, 钱立军, 流动模式下磁流变液测试系统原理设计, 第14届全国流变学学术会议, 2018年10月20日-23日, 湖南湘潭(被评为:青年优秀论文奖)
[116] Bai X X* and Chen P, Hysteresis analysis of magnetorheological fluids based on force-displacement characteristics, 29st International Conference on Adaptive Structures and Technologies (ICAST 2018), Seoul, Korea, September 30-October 4, 2018
[117] 钟伟民, 白先旭*, 祝安定, 一种磁流变惯容器的原理设计, 中国汽车工程学会越野车技术分会学术年会, 2018年8月2日-4日, 内蒙古包头
[118] Bai X X*, Cai F L, Chen P, RC operator-based model for MR dampers, Proceedings of the 5th International Conference on Dynamics, Vibration and Control, Shijiazhuang, China, July 28-30, 2018
[119] Bai X X*, Shen S, Deng X C, Qian L J, An internal bypass magnetorheological energy absorber. InACTUATOR 2018; 16th International Conference on New Actuators 2018 Jun 25 (pp. 1-5). VDE.
[120] Bai X X*, Li Y, Liao Z C, Chen J. Principle of a test bench for simulation of vehicular braking of 1/4 vehicle. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 Mar 27 (Vol. 10598, p. 1059842). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2297010)
[121] Qian L J, Chen P, Cai F L, Bai X X*. “Shape function+ memory mechanism”: based hysteresis modeling of magnetorheological fluid actuators. Behavior and Mechanics of Multifunctional Materials and Composites XII 2018 Mar 22 (Vol. 10596, p. 105961H). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2294504)
[122] Zhu Z N, Bai X X*, Chen P, Cai F L, Qian L J. Control of a 1/4 MR semi-active suspension system using a RC hysteresis model for MR damper. Active and Passive Smart Structures and Integrated Systems XII 2018 Mar 15 (Vol. 10595, p. 1059537). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2297172)
[123] Bai X X*, Shen S, Cai F L, Deng X C, Xu S X. Mechanical responses of a magnetorheological damper. InActive and Passive Smart Structures and Integrated Systems XII 2018 Mar 15 (Vol. 10595, p. 1059507). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2294502)
[124] 白先旭*, 邹祺, 馈能型磁流变阻尼器的设计与实验, 第二届中国汽车工程学会悬架技术分会学术年会, 2017年9月7日-9日, 广东广州(被评为:优秀论文一等奖)
[125] Bai X X*, Xu S X, and Shen S, Impact of magnetorheological semi-active stabilizer bar on vehicle rollover, 8th ECCOMAS Thematic Conference on Smart Structures and Materials and 6th International Conference on Smart Materials and Nanotechnology in Engineering, Madrid, Spain, pp. 129-137, 2017
[126] Bai X X*, Zou Q, and Qian L J, Design and test of a power-generated magnetorheological damper, Proceedings of SPIE Conference on Smart Structures/NDE, Portland, USA, Vol. 101641, 101641J (8pp), 2017 (ISTP, doi: 10.1117/12.2257555)
[127] Bai X X*, Xu S X, and Shen S, Magnetorheological stabilizer bar for ground vehicles, Proceedings of SPIE Conference on Smart Structures/NDE, Portland, USA, Vol. 10166, 10166G (12pp), 2017 (ISTP, doi: 10.1117/12.2258355)
[128] Bai X X*, Jiang P, Pan H, and Qian L J, Analysis and testing of an integrated semi-active seat suspension for both longitudinal and vertical vibration control, Proceedings of SPIE Conference on Smart Structures/NDE, Las Vegas, USA, Vol. 9799, 979921 (9pp), 2016 (ISTP, doi: 10.1117/12.2217950)
[129] Qian L J, Liu B, Chen P, and Bai X X*, An inverse model for magnetorheological dampers based on a restructured phenomenological model, Proceedings of SPIE Conference on Smart Structures/NDE, Las Vegas, USA, Vol. 9799, 97993H (10pp), 2016 (ISTP, doi: 10.1117/12.2217948)
[130] Cheng W, Xu S X, Qian L J, and Bai X X*, 4-DOF biodynamic lumped-parameter models for a seated occupant, Proceedings of SPIE Conference on Smart Structures/NDE, Las Vegas, USA, Vol. 9797, 97970Z (8pp), 2016 (ISTP, doi: 10.1117/12.2218399)
[131] 陈朋, 白先旭*, 钱立军, 激励速度对磁流变液挤压力学性能的影响, 第13届全国流变学学术会议, 2016年10月23日-26日, 陕西西安
[132] Bai X X*, Jiang P, and Qian L J, Design of an integrated semi-active seat suspension for both longitudinal and vertical vibration attenuation, Proceedings of 26th International Conference on Adaptive Structures and Technologies (ICAST2015-011(12pp)), Kobe, Japan, October 14-16, 2015
[133] Qian L J, Xin F L, and Bai X X*, Control and analysis of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobile, Proceedings of 26th International Conference on Adaptive Structures and Technologies (ICAST2015-010(12pp)), Kobe, Japan, October 14-16, 2015
[134] Bai X X*, Chen P, Qian L J, and Kan P, Design and analysis of a magnetorheological fluid mount featuring uni-directional squeeze mode, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS15), Colorado Springs, USA, Vol. 2, Paper No. SMASIS2015-8813, V002T04A001 (8 pp) (Recommended Best Paper Quality) (ISTP, doi:10.1115/SMASIS2015-8813)
[135] Bai X X*, Xin F L, Qian L J, and Kan P, Design and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS15), Colorado Springs, USA, Vol. 1, Paper No. SMASIS2015-8893, V001T03A014 (7 pp) (ISTP, doi: 10.1115/SMASIS2015-8893)
[136] Bai X X*, Chen P, Qian L J, and Zhu A D, Hysteresis modeling and experimental validation of a magnetorheological damper, Proceedings of SPIE Conference on Smart Structures/NDE, San Diego, USA, Vol. 9431, 943132 (12pp), 2015 (ISTP, doi: 10.1117/12.2084119)
[137] Bai X X* and Wang D H, Shock and vibration control systems using a self-sensing magnetorheological damper, Proceedings of SPIE Conference on Smart Structures/NDE, San Diego, USA, Vol. 9057, 905734 (11pp), 2014 (ISTP, doi: 10.1117/12.2045259)
[138] Bai X X* and Wereley N M, Magnetorheological impact seat suspensions for ground vehicle crash mitigation, Proceedings of SPIE Conference on Smart Structures/NDE, San Diego, USA, Vol. 9057, 9057R (12pp), 2014 (ISTP, doi: 10.1117/12.2045261)
[139] Bai X X*, Hu W, and Wereley N M, Analysis and testing of an inner bypass magnetorheological damper, Proceedings of SPIE Conference on Smart Structures/NDE, San Diego, USA, Vol. 8688, 86880Y (18pp), 2013 (Selected as Best Student Paper Competition Finalist) (ISTP, doi: 10.1117/12.2010001)
[140] Bai X X*, Wereley N M, Hu W, and Wang D H, A bidirectional-controllable magnetorheological energy absorber for shock and vibration isolation systems, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS12), Georgia, USA, Vol. 2, Paper No. SMASIS2012-8250, pp. 485-495, 2012 (ISTP, WOS: 000324504300061)
[141] Bai X X, Wereley N M, Choi Y T, and Wang D H, A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation, Proceedings of SPIE Conference on Smart Structures/NDE, San Diego, USA, Vol. 8341, 843123 (21pp), 2012 (ISTP, doi: 10.1117/12.917479)
[142] Wang D H and Bai X X, Principle of a self-powered self-sensing magnetorheological damper, 21st International Conference on Adaptive Structures and Technologies (ICAST 2010), Philadelphia, USA, October 4-6, 2010
[143] Wang D H and Bai X X, Pareto optimization based tradeoff between the controllable damping force and the relative displacement sensing of a self-sensing magnetorheological damper, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS10), Philadelphia, USA, Vol. 2, Paper No. SMASIS2010-3716, pp. 355-369, 2010 (WOS:000296288700007, Selected as Best Student Paper)
[144] Wang D H, Wang T, Bai X X, Yuan G, and Liao W H, A self-sensing magnetorheological shock absorber for motorcycles, Proceedings of 19th International Conference on Adaptive Structures and Technologies (ICAST 2008), Ascona, Switzerland, October 6-9, 2008
[145] 白先旭, 王代华, 付航, 一种具有圆环形-圆盘形液流通道的磁流变阻尼器, 第六届全国电磁流变液及其应用学术会议, 2011年11月16日-18日, 浙江宁波
IV. 制定国家/行业/地方标准/报告
[1] 白先旭等, 智能网联汽车预期功能安全场景要素及管理规范 (中国汽车工程学会标准研制计划, 起草任务书编号为: 2021-60)
V. 申请或授权发明专利
[1] 李成蹊, 白先旭, 邱吴涵, 钱立军, 孙东方, 孙华双 , 一种基于车身加速度的汽车电控悬架控制方法, (中国发明专利, 申请号: 202511286522.7)
[2] 白先旭, 宋菁, 一种针对紧急避障工况下的车辆主动后轮转向控制方法, (中国发明专利, 申请号: XXX)
[3] 白先旭, 赵珂, 李捷, 一种模糊道路特征高精检测方法, (中国发明专利, 申请号: XXX)
[4] 白先旭, 陈昊毅, 一种超低转动惯量转矩方向调节机构, (中国发明专利, 申请号: 202510403149.2)
[5] 白先旭, 赵珂, 一种模糊道路特征的高精检测方法, (中国发明专利, 申请号: 202510662351.7)
[6] 李岩杰, 白先旭, 祝安定, 一种汽车电子液压制动系统, (中国发明专利, 申请号: 202411076748X)
[7] 白先旭, 余碧勇, 李紫瑜, 一种基于安全边界的主动后轮转向控制方法, (中国发明专利, 申请号: 2024110766699)
[8] 白先旭, 吕壮壮, 蔡成晨, 一种行车安全场模型参数的标定方法 (中国发明专利, 申请号: XXX)
[9] 白先旭, 王海涛, 蔡成晨, 刘彦军, 一种驾驶设备避撞方法、计算机可读存储介质及驾驶设备 (中国发明专利, 申请号: XXX)
[10] 张世斌, 白先旭, 李维汉, 陈进, 石琴, 孙骏, 一种智能汽车自动行驶方法, (中国发明专利, 申请号: 202311479416.1)
[11] 白先旭, 王秋逸, 一种考虑电控减振器性能不足的电控悬架控制方法 (中国发明专利, 申请号: 202410523645.7)
[12] 孙浩伟, 白先旭, 左瑜, 祝安定, 李维汉, 石琴, 一种自动紧急制动系统的不确定性控制方法 (中国发明专利, 申请号: 202310592597.2)
[13] 白先旭, 潘宇翔, 王海涛, 李家城, 冯彦淏, 石琴, 考虑预期功能安全的自动紧急制动系统的控制方法 (中国发明专利, 申请号: 202310592396.2)
[14] 徐文浩, 李家城, 白先旭, 李成蹊, 刘子龙, 任咸达, 俞方舟, 电控悬架的阻尼部件与汽车液压部件的耦合作动控制方法 (中国发明专利, 申请号: 202310578620.2)
[15] 胡化从, 白先旭, 段顺昌, 李维汉, 李维汉, 孙骏, 石琴, 一种基于路面附着情况混合识别的汽车高效制动系统 (中国发明专利, 申请号: 202310435199X)
[16] 白先旭, 李亲, 李维汉, 石琴, 一种自动驾驶车辆在不同安全域的测试场景创建方法 (中国发明专利, 申请号: 2023103385503)
[17] 吴诚昊, 白先旭, 李维汉, 王俊业, 李成蹊, 祝安定, 一种机电主动悬架建模方法 (中国发明专利, 申请号: 202211453610.8)
[18] 段顺昌, 张宸维, 白先旭, 石琴, 一种车辆轮胎精确建模方法及其应用 (中国发明专利, 申请号: 202210979684.9)
[19] 白先旭, 武裕, 可用于柔性底盘拓展连接的车辆主动悬架控制方法及其应用, (中国发明专利, 专利号: ZL202411467971.7, 2025年09月授权)
[20] 白先旭, 王俊业, 李成蹊, 马雨潇, 李维汉, 吴诚昊, 一种集成举升、阻尼刚度可控的电控执行器 (中国发明专利, 专利号: ZL2023102222000, 2025年06月授权)
[21] 白先旭,张浩年,李子木,李成蹊,孙钟莹,司志远,李维汉, 一种自适应悬架系统及其应用 (中国发明专利, 专利号: ZL2022110692126, 2025年01月授权)
[22] 白先旭, 谭峻, 祝安定, 李维汉, 一种四模式自适应切换的组合隔振装置 (中国发明专利, 专利号: ZL202211221524.4, 2025年01月授权)
[23] 白先旭, 李成蹊, 李维汉, 汽车电控悬架系统传感器架构与控制算法快速验证平台 (中国发明专利, 专利号: ZL202110372883.9, 2024年11月授权)
[24] 吴诚昊, 白先旭, 王俊业, 李维汉, 一种汽车电控悬架系统控制器 (中国发明专利, 专利号: ZL 202211097120.9, 2024年7月26日授权)
[25] 白先旭, 赵田怡, 一种主动悬架控制优化方法 (中国发明专利, 专利号: ZL202210865440.8, 2024年6月21日授权)
[26] 续宁, Ashenafi Shu, 李维汉, 白先旭, 一种高效、自锁电子机械制动器 (中国发明专利, 专利号: ZL202121711099.8, 2024年5月授权)
[27] 白先旭, 吕壮壮, 石琴, 李维汉, 黄鹤, 智能网联汽车线控底盘全硬件在环的协调控制方法及应用 (中国发明专利, 专利号: ZL2022110747523, 2024年5月授权)
[28] 白先旭, 王海涛, 王俊业, 李维汉, 车辆悬架系统性能自动化测试平台及方法摇臂式台架及自动化测试系统 (中国发明专利, 授权号: ZL202211069213.0, 2024年5月授权)
[29] 孙骏, 陈浩, 白先旭, 李维汉, 一种自动驾驶车辆整车级别的性能评价方法 (中国发明专利, 专利号: ZL202110820459.6, 2023年12月授权)
[30] 白先旭, 李成蹊, 段顺昌, 石琴, 一种三维路面信息谱自动获取方法 (中国发明专利, 专利号: ZL202010461086.3, 2023年10月授权)
[31] 白先旭, 潘宇翔, 一种电子液压制动器的精确压力控制方法 (中国发明专利, 专利号: ZL202210865600.9, 2023年7月授权)
[32] 白先旭, 吕壮壮, 彭利明, 李维汉, 一种整车电控悬架系统的主动容错控制方法 (中国发明专利, 专利号: ZL202110959202.9, 2023年6月授权)
[33] 钱立军, 司志远, 白先旭, 基于状态反馈x-LMS算法的发动机主动悬置控制算法 (中国发明专利, 专利号: ZL202111537727, 2023年6月授权)
[34] 白先旭, 段顺昌, 张宸维, 祝安定, 何冠男, 李维汉, 汽车集成增稳控制方法及系统 (中国发明专利, 专利号: 202111443515.5, 2023年5月授权)
[35] 白先旭, 吕壮壮, 减振执行器 (中国发明专利, 专利号: ZL202111232962.6 (2019年8月授权) /PCT美国专利, 专利号: 11585404, 2023年2月21日), 已授权)
[36] 郏瑞, 白先旭, 祝安定, 一种汽车制动能量回收的匹配方法 (中国发明专利, 专利号: 201811509602.4, 2023年3月授权)
[37] 白先旭, 段顺昌, 石琴, 严正峰, 姚守业, 一种摩擦片式线控制动器 (中国发明专利, 专利号: ZL202110437070.3, 2022年12月授权)
[38] 齐少东, 白先旭, 李维汉, 一种汽车电控悬架预瞄控制方法 (中国发明专利, 专利号: ZL202110623048.8, 2022年11月授权)
[39] 齐少东, 白先旭, 祝安定, 李维汉, 一种电控悬架整车耦合的最优控制方法 (中国发明专利, 专利号: ZL202110743615.3, 2022年10月授权)
[40] 李维汉, 续宁, 白先旭, 一种多通道快响应感应负载可控电流驱动装置 (中国发明专利, 专利号: ZL202110407614.1, 2022年9月授权)
[41] 白先旭, 袁岭, 姜平, 汽车电控阻尼悬架系统冲击工况最优宾汉数控制方法 (中国发明专利, 专利号: ZL202110339869.9, 2022年8月授权)
[42] 白先旭, 赵田怡, 赵瑞, 杨俊伟, 蒲俪元, 一种自供能式胎路监测一体化的智能轮胎系统 (中国发明专利, 专利号: ZL202110410387.8, 2022年7月授权)
[43] 白先旭, 左瑜, 李维汉, 自动驾驶汽车控制系统的预期功能安全性能的量化评价方法 (中国发明专利, 专利号: ZL202110818881.8, 2022年6月授权)
[44] 孙骏, 张世斌, 张宸维, 白先旭, 电子液压-电子机械混合式汽车线控制动控制系统 (中国发明专利, 专利号: ZL202111002690.0, 2022年5月授权)
[45] 白先旭, 郭仁豪, 李维汉, 一种汽车制动能量回收系统的工况识别与匹配控制方法 (中国发明专利, 专利号: ZL202110213665.0, 2022年4月授权)
[46] 白先旭, 陈建川, 汤超, 李维汉, 一种基于非线性建模的电控执行器精确控制方法 (中国发明专利, 专利号: ZL202110334585.0, 2022年3月授权)
[47] 祝安定, 何冠男, 白先旭, 电流变液流动模式流变属性测试装置 (中国发明专利, 专利号: ZL201911013551.0, 2022年2月授权)
[48] 白先旭, 李洪伟, 何冠男, 一种堆叠活塞式电流变液减振器 (中国发明专利, 专利号: ZL202010355424.5, 2021年12月授权)
[49] 孙骏, 姚守业, 白先旭, 海乐森, 段顺昌, 一种一体化电机离合器耦合执行器(中国发明专利, 专利号: ZL2020107245293, 2021年11月授权)
[50] 白先旭, 李成蹊, 彭利明, 李维汉, 汽车电控半主动悬架系统控制方法 (中国发明专利, 专利号: ZL202110480180.8, 2021年11月授权)
[51] 李维汉, 续宁, 白先旭, 一种多通道快响应感应负载可控电流驱动装置 (实用新型专利, 授权专利号: ZL202120702540.X, 2021年11月授权)
[52] 白先旭, 郭仁豪, 廖增成, 汽车纵向动力学模拟与制动能量回收的综合实验测试方法 (中国发明专利, 专利号: ZL202010284250.8, 2021年7月授权)
[53] 白先旭, 何冠男, 陈根, 四象限馈能装置 (中国发明专利, 授权号: ZL202010233219.1, 2021年5月授权)
[54] 白先旭, 杨森, 基于磁滞内核的电/磁流变执行器的建模方法及其跟踪方法 (中国发明专利, 授权号: ZL201910043818.4, 2020年10月授权)
[55] 白先旭, 钟伟民, 半主动执行器的四象限输出特性实现方法 (中国发明专利, 专利号: ZL201811604706.3, 2020年8月授权)
[56] 段顺昌, 白先旭, 孙骏, 一种集中驱动式纯线控汽车制动系统及其控制方法 (中国发明专利, 专利号: ZL201910301157.0, 2020年5月授权)
[57] 白先旭, 李洋, 廖增成, 洪先乾, 1/4车辆制动模拟与性能实验测试系统 (中国发明专利, 专利号: ZL201711407370.7, 2020年2月授权)
[58] 白先旭, 邓学才, 蔡飞龙, 沈升, 电/磁流变执行器的响应特性自动测试与标定平台 (中国发明专利, 专利号: ZL201811037799.6, 2019年11月授权)
[59] 白先旭, 刘洋, 李洋, 一种磁流变传动线控制动器 (中国发明专利, 专利号: ZL201711268000.X (2019年8月授权)/PCT美国专利, 申请号: WO2019/052072; PCT/CN2017/117147 (美国专利号: US11268586B2, 2022年3月8日授权))
[60] 钱立军, 陈朋, 白先旭, 蔡飞龙, 一种实现三向隔振磁流变复合悬置 (中国发明专利, 专利号: ZL201611169282.3, 2019年3月授权)
[61] 白先旭, 李洋, 司志远, 蔡飞龙, 钱立军, 一种电机联合磁致伸缩作用的线控制动器 (中国发明专利, 专利号: ZL201611241247.8 (2018年11月授权)/PCT美国专利, 授权号: US10940845B2; PCT号: PCT/CN2017/093715 (美国专利号: US10940845B2, 2021年3月9日授权))
[62] 钱立军, 陈朋, 白先旭, 一种内旁通道式磁流变液悬置 (中国发明专利, 专利号: ZL201611028365.0, 2018年2月授权)
[63] 钱立军, 刘波, 陈朋, 白先旭, 一种磁流变阻尼器逆模型的建模方法及其应用 (中国发明专利, 专利号: 201510640813.1, 2017年11月授权)
[64] 白先旭, 辛付龙, 钱立军, 基于状态观测的半主动吸振器控制系统 (中国发明专利, 专利号: ZL201610084451.7, 2017年6月授权)
[65] 白先旭, 钱立军, 陈朋, 邱利宏, 基于单向挤压模式的磁流变液悬置 (中国发明专利, 专利号: ZL2015101921484.4, 2017年3月授权)
[66] 白先旭, 钱立军, 祝安定, 垂直坠落式冲击测试系统 (中国发明专利, 专利号: ZL201410534630.7, 2016年11月授权)
[67] 钱立军, 辛付龙, 白先旭, 程伟, 邱利宏, 一种并联模式半主动隔振器 (中国发明专利, 专利号: ZL201510056649.X, 2016年7月授权)
[68] 白先旭, 钱立军, 馈能型自传感磁流变减振器 (中国发明专利, 专利号: ZL201410424836.4, 2016年2月授权)
[69] 白先旭, 钱立军, 适用于高速冲击/低速振动控制系统的磁流变阻尼器 (中国发明专利, 专利号: ZL201310508757.7, 2015年11月授权)
[70] 王代华, 白先旭, 一种同时具有圆环形-圆盘形液流阻尼通道的磁流变阻尼器 (中国发明专利, 专利号: ZL201010579648.0, 2013年1月授权)
[71] 白先旭, 具有失效-安全性能的磁流变能量吸收器 (中国发明专利, 申请号: 201410133714.X, 2021年6月授权)
[72] 白先旭, 陈浩, 李维汉, 白国栋, 彭利明, 汤超, 李成蹊, 瞿元, 韩旭, 储亚峰, 基于双向运动可切换机构的汽车悬架激振台 (中国发明专利, 申请号: 202010461086.3)
[73] 白先旭, 汤超, 李维汉, 白国栋, 李成蹊, 彭利明, 韩旭, 瞿元, 储亚峰, 一种减振器摩擦力自动测试平台 (中国发明专利, 申请号: 202010461086.3)
[74] 白先旭, 李成蹊, 李维汉, 彭利明, 白国栋, 汤超, 瞿元, 储亚峰, 韩旭, 一种基于可调减振器和空气弹簧的整车悬架快速调校平台 (中国发明专利, 申请号: 202010461086.3)
[75] 白先旭, 白国栋, 李维汉, 彭利明, 汤超, 李成蹊, 储亚峰, 韩旭, 瞿元, 一种高压气体补偿、低摩擦力的磁流变减振器 (中国实用新型专利, 申请号: 202010461086.3)
[76] 白先旭, 陈根, 王经常, 王金桥, 一种双阻尼系统的主动冲击缓冲装置及其缓冲控制方法 (中国发明专利, 申请号: 20201017734.2)
[77] 白先旭, 陈根, 王经常, 王金桥, 一种基于磁流变弹性体的准零刚度隔振器 (中国发明专利, 申请号: 202010170122.0)
[78] 白先旭, 陈根, 王经常, 王金桥, 一种动力电池加热装置及其加热方法 (中国发明专利, 授权号: ZL202010170482.0, 2021年6月授权)
[79] 白先旭, 钟伟民, 邓学才, 祝安定, 王金桥, 王经常, 一种集成机械整流机构的机械振动-电能转换装置 (中国发明专利, 专利号: ZL201810064162.X, 2019年7月授权)
[80] 李成蹊, 白先旭, 陈建川, 李维汉, 一种振动与冲击融合控制方法 (中国发明专利, 专利号: ZL202110623242.6, 2022年2月授权. 于2023年5月转让至安徽微威胶件集团有限公司)
[81] 白先旭, 何冠男, 祝安定, 磁流变液流动模式流变属性测试装置 (中国发明专利, 授权号: ZL201911013583.0, 2022年2月授权. 于2023年5月转让至安徽微威胶件集团有限公司)
[82] 白先旭, 刘枫, 姚守业, 孙骏, 一种联合电机与可控离合器的多功能执行器的控制方法 (中国发明专利, 专利号: ZL202010170125.4, 2021年7月授权)
[83] 白先旭, 陈健, 陈朋, 蒋鹏飞, 钱立军, 磁流变液流动模式流变属性自动化测试系统及其方法 (中国发明专利, 专利号: ZL201811572883.8, 2021年7月授权)
[84] 钟伟民, 白先旭, 祝安定, 一种磁流变惯容装置及其惯容系数的连续调节方法 (中国发明专利, 授权号: ZL201811602814.7, 2020年11月授权)
[85] 白先旭, 孙呈祥, 杜浩, 石任凭, 一种新型超轻型静音驱动器 (中国发明专利, 专利号: ZL2018101471166, 2020年7月授权)
[86] 谢地林, 白先旭, 邓学才, 传递扭矩可控的磁流变平衡悬架及其控制方法 (中国发明专利, 专利号: ZL201910300344.7, 2020年6月授权)
[87] 白先旭, 刘洋, 一种小尺寸大可控范围磁流变离合器 (中国发明专利, 专利号: ZL201811166532.7, 2020年6月授权)
[88] 白先旭, 段顺昌, 一种纯线控汽车制动系统 (中国发明专利, 专利号: ZL201910300335.8, 2020年5月授权)
[89] 李祥, 白先旭, 杨森, 祝安定, 一种半主动可控座椅悬架的振动和冲击混合控制方法 (中国发明专利, 专利号: ZL201910142864.X, 2020年2月授权)
[90] 白先旭, 吴杰, 谭海宇, 沈升, 陈亮亮, 贾海涛, 一种磁流变阀控阻尼无级可调式减振器 (中国发明专利, 专利号: ZL201810247280.4, 2020年2月授权)
[91] 白先旭, 徐时旭, 沈升, 杨森, 钱立军, 基于可调惯性质量的汽车横向稳定杆及其控制方法 (中国发明专利, 专利号: ZL201710482667.3, 2019年10月授权)
[92] 白先旭, 蔡飞龙, 钱立军, 一种主动-半被动复合隔振器 (中国发明专利, 专利号: ZL201710130205.5, 2019年2月授权)
[93] 白先旭, 邹祺, 一种馈能式磁流变液能量吸收器 (中国发明专利, 专利号: ZL201610826847.4, 2019年1月授权)
[94] 白先旭, 沈升, 徐时旭, 蔡飞龙, 钱立军, 大转矩往复旋转式磁流变阻尼器 (中国发明专利, 专利号: ZL201710400266.9, 2019年1月授权)
[95] 白先旭, 沈升, 李洋, 邱少林, 钱立军, 一种汽车自适应碰撞吸能系统 (中国发明专利, 专利号: ZL201610972722.2, 2018年4月授权)
[96] 白先旭, 邹祺, 沈升, 钱立军, 一种往复式旋转激励台架系统 (中国发明专利, 专利号: ZL201511031565.7, 2017年9月授权)
[97] 白先旭, 孙呈祥, 杜浩, 一种超轻型静音发动机 (中国发明专利, 专利号: ZL201811039059.6, 2019年11月授权. 于2020年5月转让至安庆市汇通汽车部件股份有限公司)
[98] 白先旭, 姜鹏, 钱立军, 程伟, 陈朋, 辛付龙, 潘辉, 一种纵向垂向二维集成半主动可控减振装置 (中国发明专利, 专利号: ZL201510256420.0, 2017年1月授权. 于2020年5月转让至安庆市汇通汽车部件股份有限公司)
[99] 白先旭, 钱立军, 辛付龙, 姜鹏, 陈朋, 一种具有主动吸振能力的隔振器 (中国发明专利, 专利号: ZL201410625438.9, 2016年11月授权. 于2020年5月转让至安庆市汇通汽车部件股份有限公司)
[100] 白先旭, 钱立军, 纯剪切式磁流变阻尼器 (中国发明专利, 专利号: ZL201410425759.4, 2016年2月授权. 于2020年5月转让至安庆市汇通汽车部件股份有限公司)
VI. 软件著作
[1] 基于重要性采样的预期功能安全场景生成系统
[2] 自动驾驶数据场景学习系统
[3] 自动生成驾驶仿真场景系统
[4] AEB的预期功能安全场景泛化软件
[5] 自动驾驶预期功能安全风险评估系统
[6] 智能仿真环境AEB算法功能软件
祝安定 Anding Zhu
I. 论文
[1] Zhu A D, Zhong W M, Bai X X*, Design and analysis of a shock absorber with both tunable inertance and damping. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 Mar 27 (Vol. 10970, p. 109701U). International Society for Optics and Photonics. (ISTP, doi: 10.1117/12.2513366)
[2] 祝安定,李祥,杨森,白先旭,一种纵向垂向二维振动集成半主动可控座椅悬架系统的试验研究,合肥工业大学学报,2021,44(3):304-310
[3] An-Ding Zhu, Guan-nan He, Shun-Chang Duan, Wei-han Li, Xian-Xu Bai, Phase Portrait Trajectory of a Three Degree-of-Freedom Vehicular Dynamic Model. Journal of Dynamic Systems, Measurement, and Control, MAY 2022, Vol. 144 / 051002
II. 专利
[1] 祝安定,何冠男,白先旭, 电流变液流动模式流变属性测试装置 (中国发明专利, 专利号: ZL2019 1 1013551.0, 2022年3月授权)
[2] 白先旭, 钱立军, 祝安定, 垂直坠落式冲击测试系统 (中国发明专利, 专利号: ZL201410534630.7, 2016年11月授权)
李维汉 Weihan Li
I. 论文
[1] LI WEIHAN, ZHOU CHENGPEI, BAI GUODONG, BAI XIANXU 'FRANK. Design and verification of low-friction and high-performance monotube magnetorheological damper[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2025, 239(1): 373-390.
[2] LI WEIHAN, BAI XIANXU “FRANK”, JIANG PING, YUAN LING, LIU HUI, GAO PU, PAN JIABAO. Magnetorheological semi-active shock mitigation control: Part ii: System extension and application analysis[J]. Journal of Intelligent Material Systems and Structures, 2023: 1045389X221151072.
[3] LI WEIHAN, BAI XIANXU “FRANK”, JIANG PING, YUAN LING, LIU HUI, GAO PU, ZHU ANDING, PAN JIABAO. Magnetorheological semi-active shock mitigation control. Part i: Numerical analysis and preliminary tests[J]. Journal of Intelligent Material Systems and Structures, 2023: 1045389X221151071.
[4] Weihan Li*, Han Zhao, Siqi Li, Junjun Deng, Tianze Kan, and Chunting Chris Mi, Integrated LCC Compensation Topology for Wireless Charger in Electric and Plug-in Electric Vehicles [J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4215-4225
[5] Weihan Li*, Han Zhao, Junjun Deng, Siqi Li, and Chunting Chris Mi, Comparison Study on SS and Double-sided LCC Compensation Topologies for EV/PHEV Wireless Chargers [J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4429-4439
II. 专利
[1] 李维汉,续宁,白先旭,一种多通道快响应感性负载可控电流驱动装置(发明专利,ZL202110407614.1,2022-09-20授权,已实现成果转化,转化金额40万元)
[2] 李维汉,秦志颖,时辉,一种电动公交车的复合电源系统及其能量管理控制方法(发明专利,ZL202111315570.6,2023-07-12授权)
[3] 李维汉,潘升,胡昕伟,张争光,姜忠祥,费运达,融合雷达测距和行驶轨迹预测的汽车掉头辅助系统及方法(发明专利,ZL202010162033.1,2022-12-27授权)
[4] 李维汉,时辉,尹安东,秦志颖,武慎春,一种无线充电系统(实用新型专利,ZL202021470848.8,2021-02-02授权)
[5] 续宁,魏书枚,李维汉,等.一种高效、自锁电子机械制动器(发明专利,ZL202110837933.6,2024-04-12授权)
吴迪 DiWu
I.专利
[1] 吴迪,余凯,顾童童,陶波,韩卫,张晟瑞,一种基于V2X技术的应急车辆通过交叉口的信号配时方法(中国发明专利,ZL202010610564.2,2021.07.30授权)
[2] 吴迪,郭鸣明,李维汉,黄鹤,张栋,一种智能汽车极限工况下轨迹跟踪和稳定性控制方法(中国发明专利,ZL202210366511.X,2024.09.24授权)
[3] 吴迪,赵飞,范少杰,李维汉,张师搏,一种分布式驱动电动汽车复合制动控制方法(中国发明专利,CN202411389614.3,实审中)
[4] 吴迪,范少杰,白先旭,李维汉,孙华双,刘洋,刘宇,李良初,一种高效率全主动悬架执行器(中国发明专利,CN202510108883.6,实审中)
陈进 Jin Chen
I. 论文
[1] Chen J, Liu J, Ding H, Cheng Z, Zhang W. Enhanced cooperative driving strategy for cav platoons via quantized feedback control under limited channel bandwidth [J]. Automotive Innovation, 2025, accepted, doi:10.1007/s42154-025-00359-7.
[2] Chen J, Sun D, Zhao M. Human-Like Control for Automated Vehicles and Avoiding “Vehicle Face-Off” in Unprotected Left Turn Scenarios [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1609-1618.
[3] Chen J, Sun D, Zhao M, Li Y, Liu Z. A New Lane Keeping Method Based on Human-Simulated Intelligent Control [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7058-7069.
[4] Chen J, Sun D, Zhao M, Li Y. DCFS-based online driving preferences learning approach with application to personalized lane keeping controller design [J]. International Journal of Automotive Technology, 22(5), 2021.
[5] Chen J, Sun D, Li Y, Zhao M, Liu W, Jin S. Human–machine cooperative scheme for car-following control of the connected and automated vehicles [J]. Physica A: Statistical Mechanics and its Applications, 2021.
[6] Li Y, Sun D, Zhao M, Chen J, Liu Z, Cheng S, Chen T. MPC-based switched driving model for human vehicle co-piloting considering human factors [J]. Transportation Research Part C: Emerging Technologies, 2020.
[7] Chen J, Sun D, Zhao M, Li Y, Liu Z. DCFS-based deep learning supervisory control for modeling lane keeping of expert drivers [J]. Physica A: Statistical Mechanics and its Applications, 2021.
[8] Ding H, Pan H, Bai H, Zheng X, Chen J, Zhang W. Driving strategy of connected and autonomous vehicles based on multiple preceding vehicles state estimation in mixed vehicular traffic [J], Physica A: Statistical Mechanics and its Applications, 2022.
[9] Ding H, Zhang L, Chen J, Zheng X, Pan H, Zhang W. MPC-based dynamic speed control of CAVs in multiple sections upstream of the bottleneck area within a mixed vehicular environment [J]. Physica A: Statistical Mechanics and its Applications, 2023: 128542.
[10] Li Y, Sun D, Zhao M, Chen J, Jin S, Liu Z. Modeling longitudinal following control based on preceding vehicle motion predictor [C]// Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference, 2019.
[11] Li Y, Zhao M, Sun D, Chen J, Liu W. A new longitudinal car-following control scheme of AVs towards the non-connected situation [J]. Modern Physics Letters B, 34(13), 2020.
[12] Chen D, Zhao M, Sun D, Zheng L, Jin S, Chen J. Robust H∞ control of cooperative driving system with external disturbances and communication delays in the vicinity of traffic signals [J]. Physica A: Statistical Mechanics and its Applications, 2020.
[13] Jin S, Sun D H, Zhao M, Li Y, Chen J. Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective [J]. Physica A: Statistical Mechanics and its Applications, 2020.
[14] Mao P, Chen J, Sun D. Risk Status Identification during the Takeover of Conditionally Automated Vehicles [C]// Proceedings of the Proceedings of the 32nd Chinese Control and Decision Conference, 2020.
II. 专利
(1) 陈进; 汪盼盼; 白先旭; 卫将军; 凤鹏飞 ; 基于路侧固定摄像头的车辆轨迹提取方法, 2024-10-21,中国, CN202411468489.5
(2) 陈进; 龙建成; 白先旭 ; 基于非线性量化控制的CAV 车辆队列控制方法, 2023-9-20, 中国,CN202311221714.0
(3) 陈进; 龙建成; 白先旭 ; 基于智能手表的驾驶人路怒症检测方法, 2023-9-20, 中国,CN202311215789.8
(4) 赵敏; 孙棣华; 陈进 ; 一种基于深度强化学习的无保护左转弯驾驶控制方法, 2022-11-25, 中国,ZL202110773027.4
(5) 张世斌; 白先旭; 李维汉; 陈进; 石琴; 孙骏 ; 一种智能汽车自动行驶方法, 2023-11-08, 中国,CN202311479416.1
(6) 丁恒; 王巧霞; 陈欣妤; 张丽虹; 周文政; 杨涵茹; 程泽阳; 陈进 ; 一种四相位信号交叉口的流向冲突判别和配时优化方法, 2023-03-28, 中国, CN202310314456.4
(7) 丁恒; 潘昊; 李继业; 陈进; 柏海舰; 张卫华 ; 快速路混合网联车交通流仿真系统V1.0,2021SR1672997, 原始取得, 全部权利, 2021-8-10 (软著)
李捷 Jie Li
I. 论文
[1]. Liu Y, Li J, et al. Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles[J]. Journal of Power Sources, (2019), 429: 55-66.
[2]. Li J, et al. Research on equivalent factor boundary of equivalent consumption minimization strategy for PHEVs[J]. IEEE Transactions on Vehicular Technology, (2020), 69(6): 6011-6024.
[3]. Li J, et al. A real-time optimization energy management of range extended electric vehicles for battery lifetime and energy consumption [J]. Journal of Power Sources, (2021), 498: 229939.
[4]. Li J, et al. Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections [J]. Energy, (2022), 251: 123924.
[5]. Wu X, Li J, et al. A deep reinforcement learning based hierarchical eco-driving strategy for connected and automated HEVs[J]. IEEE Transactions on Vehicular Technology, (2023), 72(11).
[6]. Li J, et al. Overcoming driving challenges in complex urban traffic: a multi-objective eco-driving strategy via safety model based reinforcement learning [J]. Energy, (2023), 284: 128517.
[7]. Li J, et al. Multi-objective eco-driving strategy for connected and automated electric vehicles considering urban traffic influence factors [J]. IEEE Transactions on Transportation Electrification, (2024).
[8]. Fan J, Wu X, Li J, et al. Deep Reinforcement Learning Based Integrated Eco-driving Strategy for Connected and Automated Electric Vehicles in Complex Urban Scenarios[J]. IEEE Transactions on Vehicular Technology, (2024).
[9]. Li J, et al. Intelligent eco-driving control for urban CAVs using a model-based controller assisted deep reinforcement learning [J]. IEEE Transactions on Intelligent Transportation Systems, (2025).
[10]. 李捷, 等. 基于强化学习的城市场景多目标生态驾驶策略[J]. 汽车工程, (2023), 45(10).
II. 专利
[1] 吴晓东, 李捷, 等. 一种智能网联HEV车路协同分层生态驾驶控制方法和系统[P]. CN115955712A,2023-04-11.(实审)
[2] 吴晓东, 李捷. 一种动态城市交通场景数字孪生建模方法[P]. CN118607174A,2024-09-06.(实审)